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Abstract. The unitary irreducible realizations (representations up to a factor) of the maximal
non-trivial central extension of thél + 1) Galilei group, G(1 + 1), are obtained via the

linear unitary irreducible representations of its maximal non-trivial central extenSidiny- 1).

As an application we construct the Stratonovich-Weyl correspondence, which allows Moyal
quantization of classical systems, for two cases of great physical interest: a system in a external
variable force field and a variable-mass system.

1. Introduction

This paper is part of a wider programme started some years ago, which includes, as one of
its goals, the construction of the unitary irreducible realizations (or representations up to a
factor) of the kinematical groups of the space-time. Thus, we have constructed the locally
operating representations of some of these groups—for instance: the Galilel) group

in [1]; the unitary irreducible realizations of thig+ 1) kinematical groups (Galilei, Poindar

and Newton—Hooke) in [2]; and the case of the Galii- 1) group in [3]. Following this
project, we present here the realizations of the maximal non-trivial central extension of the
Galilei (1 + 1) group, G(1+ 1). They have been obtained by means of obtaining linear

unitary irreducible representations of a new grogfl + 1), resulting from the central
extension ofG(1+ 1) by U(1).

Unitary irreducible realizations (u.i.r.) can be applied to quantize, in the sense of
Moyal [4], classical systems which have connected Lie groups as symmetry groups. This
is carried out via the Stratonovich—Wedw) correspondence (see [5]). This tool allows
us to enlarge the phase-space formulation of quantum mechanics, given through the Moyal
formalism [4], to physical systems with spin [6], relativistic systems [7] and systems in
interaction [2, 3, 8] (see [9] for a review).

The construction of thew correspondence requires the knowledge of the (classes of
equivalence of) projective unitary irreducible representations (p.u.i.r.) of the symmetry
group G as well as its coadjoint orbits. In addition we must put the two elements in
correspondence. Note that (elementary) classical systems are associated with the coadjoint
orbits of their corresponding symmetry groups. These orbits can be obtained taking
into account the Kirillov—Kostant—Souriau theorem (see [10]), which establishes a local
diffeomorphism between the homogeneous symplectic spaces of a connected LigGgroup
and the coadjoint orbits of its central extension #yl). On the other hand, the support
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space of a p.u.i.r. (u.i.r.) of the symmetry group is the quantum counterpart of a coadjoint
orbit. Note that the correspondence between coadjoint orbits and p.u.i.r. (u.i.r.) for the
groups involved in this paper is one to one—this is not the case in general.

The computation of the u.i.r. off can be linearized by working with a new group,
a central extension of the original one, whose linear unitary irreducible representations
(l.u.i.r.) provide the origin for the u.i.r. os. Moreover, this simplifies the research into
the coadjoint orbits and the correspondence with the p.u.i.&.of

In [2] we constructed thesw kernels for physical systems associated with the one-
dimensional kinematical groups: Galilei, Poineaand Newton—Hooke. The central
extensions of these groups are physically interpreted either as masses or as constant forces
according to the group considered. So, we can introduce interactions in a system via central
extensions of its symmetry group.

Recently, classical systems associated with a certain central extensiGiilcf 1)
have been studied [11]. Thus, classical systems with non-constant acceleration (but whose
derivative with respect to time—the jerk—is constant), can be considered. In terms of group
theory, the force is no longer constant, because its corresponding infinitesimal generator now
fails to be central and its commutator with the infinitesimal generator of the time translations
provides the origin for a new central extension, directly related to the jerk. Systems with
variable mass appear in a similar way.

In this paper we also study carefully tls& correspondence for some of these Galilean
systems.

The paper is organized as follows: section 2 presents a short review ofwhe
correspondence. In section 3 we study the maximal non-trivial central extensipii ¢f1),

5(1 + 1), and its coadjoint orbits. Section 4 deals with the problem of constructing the
lu.i.r. of G(1+1). A complete list of representives for each equivalence class of l.u.i.r. is

given. The procedure for obtaining the u.i.r@f1+ 1) from the l.u.i.r. of G(1+ 1) is also
demonstrated. In section 5 we develop #vecorrespondence for two particular elementary
physical systems: (1) the case of variable force; and (2) the case of variable mass. We
conclude with some remarks and an appendix on the group extensions, cohomology and
linearization of projective unitary representations of Lie groups.

2. The Stratonovich—Weyl correspondence

The sw correspondence [5, 9] is a map that assigns linear operators on a Hilbert space to
functions defined on a phase space. Bhecorrespondence profits from the existence of a
(connected) Lie groupis, of the symmetry of the physical system under study. Thus, the
phase space considered is a coadjoint orbit of this Lie group and the Hilbert space is the
support space of a p.u.i.r. @f.

The first difficulty that arises is the construction of the p.u.i.r@fhowever, we are
going to linearize the problem using a splitting groG@pof G, i.e., a Lie groupG such that
any p.u.i.r. ofG can be lifted to a l.u.i.r. oG and, reciprocally, every l.u.i.r. af provides
a p.u.i.r. ofG (see the appendix for more details).

A second one is that of assigning to each l.u.i.rGf coadjoint orbit ofG. This is
carried out by the method of Kirillov [10] for constructing induced representations in the
case of nilpotent groups.

The sw correspondence is performed via the existence ofsthekernel, €2, which is
a mapping transforming each poimtof a given coadjoint orbitD of G into a selfadjoint
operator £2(u), on the Hilbert space( supporting the l.u.i.r. associated with the orbit. This
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mapping satisfies the following properties:
(1) u —> Q(u) is one to one;
(2) Q(u) is selfadjoint,Vu € O;
(3) tr[Q2(u)] = 1, Yu € O—this trace is usually defined in a generalized sense;
(4) traciality:

/0 Q2 2WINW) du(w) = Q) 2.1)

wherep is the G-invariant measure o®—this property means that 2(x)Q2(v)] behaves
like a Dirac deltad (u — v) with respect to the measugg(v);
(5) covariance:
U@)Qu)U (g™ = Q(gu) Vg e G;Vu e O (2.2)

with U(g) the l.u.i.r. of G associated with the orbi® and gu the transformed point af
produced by the coadjoint action of

Starting from asw kernel for O, its associategw correspondence is defined as follows.
If f(u) is a function onO, an operatorA, on H, is associated with it via

A :/ F@)Qwu) du(u). (2.3)
o
The property of traciality allows us to obtain an inversion formula:
Wau) = trfAQw)] = / FU[Q@)QW)] du(v) = f(u). (2.4)
o

The function,W, (1), is usually called the Wigner function of. Traciality also yields the
following expression:

t[AB] = / W) Wi ) die (a0 (2.5)
[0)

allowing one to obtain quantum averages as in classical statistical mechanics.

The applicability of thesw correspondence is finally based on the construction of a
non-commutative product—the so-called star or twisted product—for generalized functions
on phase space equivalent to the product of operators on its corresponding Hilbert space.
We can define this twisted product of two functiofi&u) andg(u) on O as

(f*x&)u) = /0/0tr[ﬂ(u)ﬂ(v)ﬂ(w)]f(v)g(w) du(v) du(w). (2.6)

It is easy to verify that
(Wa x Wg)(u) = Wap(u) (2.7)
and

/O(f *g)(u) du(u) = /0 J)g(u) duu). (2.8)

The term trl2(u)Q(v)Q(w)] is called the tri-kernel of thesw correspondence. We will
below give an explicit expression for it, together with the coadjoint orbit (phase space) and
the sw kernel, completing the quantization for the cases under consideration.

The construction of aw kernel requires the following steps: (1) choose an arbitrary
point ug of O as origin; (2) produce aansatzfor a selfadjoint operator of trace one (with
respect to a suitable trac€)(uo); (3) finally, define the kernel on the whole ¢f via

Qu) = Qguo) = U(g)Quo)U(g™) (2.9)
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whereg is an element ol such thatgug = u. Note that this kernel is well defined if and
only if

Quo) = U()Quo)U(y ™) Vy € Ty (2.10)

whereTl,, is the isotopy group ofig, i.e., Ty, = {y € G|yuo = uo}. This property, proved
in [2], implies that€2(u), defined as above, is covariant. ReciprocallyQ2ifi) is covariant,
the property (2.10) holds. Remark that the covariance property guarantees thatkbenel

is well defined in the coadjoint orbi®—in other words, it is independent of the choice of
section fromO on G.

It is interesting to include here a simple example in order to illustrate the meaning of
the above construction for the standard quantum theory.

The main ingredient in the Weyl-Wigner—Moyal (or briefly Moyal) formulation of
guantum mechanics [12, 13] is the twisted or Moyal product for functions on phase
space. This product can be defined by using the Weyl mapping, i.e., a linear isomorphism
between the space of the above-mentioned functions and the space of operators on a
standard Hilbert space. The Weyl mapping can be introduced through the Grossmann—
Royer operators [14, 15], which are defined as follows:

[K(g, p)¢l(z) = 2"é?P @D o(2q — x) (2.11)

where the standari®?* phase space with coordinatég, p) is assumed. These operators
act as integral kernels in such a way that to a functfothere corresponds the operator

1
W(f) = g/ f(q,p)K(q, p) dq dp. (2.12)
R2n
The mapping is invertible, so the Moyal product can be defined by
fxg=WHW(HW(@) (2.13)

for which the explicit expression is

1 .
(f*g)(u) = - / f(w)g(w) expliuJv +vJw + wJu)] dv dw (2.14)
R4

where J is the matrix

0o I,
-1, O
and wherel,, and 0 are the:-dimensional identity and the x n zero matrix, respectively,
andwu, v, w stand for(q, p), (¢’, p"), (¢", p").

Now, we can construct th&w correspondence for the Heisenberg gréifi*?, i.e., the
setR?+1 endowed with the following product:

1
(a,b,c)a,b,c) = (a +a,b+b,c+c + é(a b —a - b)) (2.15)

with a, a’, b, b € R" andc, ¢’ € R. The corresponding Lie algebr&a?' 1, is generated by
the identity operator i.2(R"), I, and then-dimensional position and momentum operators
Q. P with non-vanishing commutation relation®{, P;] = i18;;. The coadjoint orbits of
dimension greater than zero are all isomorphid®Rf and yield the same kind of induced
representations. A l.u.i.r. af?*+! associated with the coadjoint orbit specifiedy 1 is
(let us write(x, y, z) for the coordinates on a basis @%2'+1)* dual to the basi$Q;, P;, I}

of HZ+1):

[U(a, b, c)p](€) = exp[—i (c +b-E+ %a . b>:| pla+§) (2.16)
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whereg € L2(R").
Taking (g = /z, p = y) as canonical coordinates on the orbit and choosing the point
(0, 0) as the origin(ug) we can construct thansatz

[Quo)p](§) = 2" (=€) (2.17)

and obtain from it thesw kernel and tri-kernel which coincide with (2.11) and the integral
kernel in (2.14), respectively.

3. The doubly extended Galilei (1+ 1) group

The Galilei groupG (1+ 1) is the group of transformations of thi&+ 1) Newtonian space-
time. Let(z, x) be the time and space coordinates of a point; the action of a generic element
g = (b,a,v) =P’ ¢ G(1+ 1) on this point is
', x)=gt,x)=(@+b,x+a+vt) (3.1)
whereb anda are the parameters of time and space translationsvaratresponds to the
Galilean inertial transformation. The Lie algebra@fl+1), G(1+1), is generated by, P
and K, which are the infinitesimal generators of time and space translations and Galilean
inertial transformations, respectively. The Lie commutators of these generators are
[K,H]=P [K,P]=0 [P,H]=0. 3.2)

Note that the Lie algebra just defined is isomorphic to that of the Heisenberg group
H?*1 which is itself a central extension of the group of translations of the phase plane.

3.1. Central extension af (1 + 1)

The algebraj(1+ 1) admits a maximal non-trivial central extension Ry [2, 16] (see also
the appendix). Letj(1+ 1) be the central extended algebra@fl + 1) with generators
H, P, K, M and F, and non-vanishing commutation relations

[K,H] =P [K,Pl=M [P,H]=F (3.3)

where M and F are the two central generators linked with the extension. From a physical
point of view M is related to the mass of an elementary physical systemFandth a
constant force field acting on this system, taking into account the theory of the p.u.i.r. of
G [1, 17]. The group law foiG(1+ 1) is

1 1
g8 = (a+a'+ab’+ évb’2,9+9’+va’+ 2v2b/,b+b',a—l—a’—i—vb’,v—i—v’) (3.4)

with g = (a, 0, b, a, v) = eF @Mt e e’k [2]. The action on the space-time is like (3.1),
ie., (', x")=g@,x) = (t+b,x+a+vt), because the central generators act trivially on it.

3.2. Central extension @ (1 + 1)

The algebraj (1 + 1) admits a new maximal non-trivial central extension®3; G(1 + 1),

as is easy to prove by applying the cohomological methods shown in the appendix. This
extended algebra is eight dimensional [11] and the non-zero Lie brackets in terms of the
basis{H, P, K, M, F, R, D, S} are as follows:

[K,H] =P [K,M] =R [H,M]=—-D [H,P]=—F

[K.Pl=M [K,F]=D [H, F] = —S. (3.5)
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Note thatM and F are no longer central generators, but this role is now played o#
andS. The group law forG (1 + 1) is given by
28 =0+ 0 +v0 + 3% + 2%, 8+ 8 +va — b0’ —vd (b + b)) — 2v%?
—%bb’vz, o+o —ba — %ab’2 —abb’ — %vb/3 — %vbb/z, o+ao +ab
+30b%,0 + 6" +va + 2% b+ b a+ad +vb v+v) (3.6)
whereg = (p,8,0,a,0,b,a,v) = eRPerSeF @M epH etk ¢ G(1+ 1). The inverse
3 ' of an elemeng is
g = (—p+0v—Lav?+ Lbvd, —5 — 0b +av — 22? —0 — ab + Sab® — Lo,

—a +ab — %vbz, —0 4+ av — %bvz, —b, —a + vb, —v). 8.7

3.3. Coadjoint orbits oﬁ(l +1

Let G be a Lie groupg its associated Lie algebra agd the dual space df. There exists
an action ofG on G, called the adjoint action, defined by @) = [X,Y], X.Y € G.
Exponentiation gives the adjoint action of the groGipon its Lie algebrag: Adex(Y) =
% (v), where € € G andX, Y € G. The coadjoint action o0& on G* is given by
(COAd, a, X) = (a, Ad,1X) g€G,XeG,aegG" (3.8)

where( , ) denotes the product @I* andG. The coadjoint action of a generic element
g=(p,8,0,0,0,b,a,v)eGl+1)

on a point of?(l + 1* of cgordinates(r, d,s, f,m,h, p,k) in a basis dual to the basis
(R,D,S,F,M,H, P,K}of G(1+ 1) (and in this order) is
r=r d=d s'=s
f'=f—dv+sh m' =m—rv-+db
p/=p—mv+fb+%rv2—dvb+%sb2 (3.9
k' =k+ pb+m(a—bv)+ 3 fb°+r@ + 1bv> — av) + d(a — Jvb°) + Lsb°
n :h—pv+%mv2—fa— %rv?’—d(e — av) — sa.
Note that this expression is equivalent to, but not identical, the one obtained in [11] because
different, but equivalent, 2-cocycles are used.

For the sake of simplicity we will omit from now on bars denoting extensions over
elements of a group determined when the group is arranged in advance.

The coadjoint orbits for this action are classified by displaying their invariants as follows
(note that in this classificatiof; denotes a constant).

(1) The three extensions are non-vanishing
[1.1] The invariants characterizing this coadjoint orbit argd, s, and
dmf sm? +rf?
d?2—rs  2(d?—rs) -
This orbit is four dimensional (4D).
[1.2] Now the invariants ared, s, (r = d?/s) andm — (d/s) f = Ci. It is also 4D.

[1.3] This orbit is 2D and is determined lay s, (r = d?/s), (m = (d/s)f), p— f%/2s =
Cy andk + (d/s)h — (C2/s) f — £3/652 = Ca.

p— 1.
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(2) Two non-vanishing extensians

[2.1] (s =0),r,d, p —mf/d +rf?/2d* = C.
[22] (r = 0)7 ds S, P - mf/d +Sm2/2d2 = Cl'
23] d=0),r,s, p+sm?+rf2/2rs = Cy.

All of these orbits are 4D.
(3) One non-vanishing extension

[3.1] (s # 0), s, m. It is 4D.

[32] (s #0),(m=0),s,p— f2/25s = C1,k— fp/s + f3/3s2 = Ca. It is 2D.
[3.3] (r #0), r, f. This orbit is 4D.

[34] r £0),(f =0),r, p—m?/2r = C1,h —mp/r +m3/3r? = C,. It is 2D.
[3.5] (d #0),d, p—mf/d = C1. This orbit is 4D.

(4) The three extensions vanish=d = s = 0).

[4.1] m, f, p? — 2mh — 2fk = C1.

[4.2] (f =0), p? — 2mh = Cy.

[4.3] in =0), p? — 2fk = C1.

[4.4] (m=f=0),(p#0p=Cr

[4.5] (m = f = p = 0). Here the orbit is a point.

All of the remaining coadjoints orbits of this case (4) are 2D.

Now we analyse in more detail two of these sets of orbits because of the physical
meaning, which we will see in section 5.

3.3.1. Variable force Let us consider case [3.1] of the above classification. The coadjoint
action is given by

s'=s f'=f+sb m =m
p'=p—mv+ fb+ Isb
K =k+ pb+m(a—bv) + 1 fp? + Lsb3

h’:h—pv—i—%mvz—fa—sot

(3.10)

where
(07 O’ S/a f/a m/5 h’a p/5 k,)
is the point obtained by transformation of
(0’ 07S7 famaha p’k)
under the action of the element
g=(p,8,0,a,0,b,a,v).
Note that expression (3.10) is obtained directly from (3.9) by makirgd = 0. In other
words, we can consider in this case just the extensiof(f+ 1) by (S) = R.
The invariants characterizing the orbits are and s or equivalentlym, j = s/m
(j = jerk). These orbits will be denote®,,, = 0,,; and are 4D. A set of canonical
coordinateq{q, p} =1, {f, ¢} = 1) for these orbits is given by

Kk 1 p? k
q—% p f ¢—S<h—2m+fm>. (3.12)
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The symplectic 2-form is@d = dg A dp + df A dp. In these coordinates the coadjoint
action (3.10) is rewritten as

1 1
q/=q+£b+fib2+fjb3+a—bv

m 2m 6
p'=p—mv+ fb+ }jmb? f'=f+ jmb (3.12)

r__ 1 2 1f 3 1 4
¢—¢+(q+a)b+é(m )b+6—b + o bt -

We can give a dynamical interpretation using the temporal evolution of the phase space
coordinates, which is given, from (3.12), by

r©  fO ,

q(t)_ (O)‘i‘it‘i‘ﬂt +6[

p(®) = p0) + f(O)t + 2 jmt? f(t)—f(0)+jmt (3.13)
1p© 5, 10 4

$(1) = B0 +qO) + 5= Zif+ 2 +24t

Note that the temporal evolution of the position coordinate corresponds to a Galilean system
with non-constant acceleratian but with dz/dt = j, a constant (the jerk). Taking into
account the evolution equations of this system:

dp daf . dg _ p dp
o e eTw @Y (349

it is easy to find the corresponding Hamiltonian

p?

H = om fq+ jmo. (3.15)
m

3.3.2. Variable mass Let us consider now the case [3.5]. The coadjoint action, taking
r=s=0in(3.9),is

d=d fl=f—dv m' =m+db
p'=p—mv+ fb—dvb k' =k+ pb+m(a—vb)+ 3 fb*+d(a— Svb®) (3.16)
h’:h—pv+%mv2—fa—d(0—av).

The invariants characterizing the orbits turn out to be the real paramétensd
¢ = p—mf/d, so we have a stratum of 4D orbit3,; .. For O, .

2
k ¢=§ M:% e:h—%—%fz (3.17)

is a set of canonical coordinates, with a symplectic 2-form givendoy=ck Ad¢ +du Ade.
The coadjoint action (3.16) in these new coordinates is

wW=u+b ¢ =¢—v

bZ
k/=k+d(a+a,u+(¢—v)<ﬂb+2))+Cb (3.18)

6/=6—d(9+a(¢>—v)+l;(¢>—v)2>.



Galilean systems and quantization 697
Once more, we can give a dynamical interpretation by deducing the laws of motion:
@) =¢(0) w() = u@0 +1

2
K1) = K(0) +dg (0) (u(on - tz) +at (3.19)

d
€t) = €(0) — E¢(0)2t

and the corresponding evolution equations:

dp duw dk e d ,
E_O E_l E—c+du¢ — =——¢ (3.20)

associated with the Hamiltonial = %duqﬁz +cp + €.

4. Linear unitary irreducible representations of the doubly extended Galilei (1+ 1)
group

In order to construct the l.u.i.r. (I:T}(1+ 1) we are going to use the theory of Kirillov [10]

becauseG (1 + 1) is a nilpotent group of class four. First of all we present a short review
of this theory.

Let us choose an elementin each coadjoint orbit; the subalgelita of G such that
u((H,H]) = (u,[H,H]) = 0 is said to be subordinate to The functionalx allows the
construction of a unitary one-dimensional representatigrof the subgroupH associated
with H via

A () =M v eH. (4.1)

Starting from this representatioh, of H we induce a representation for the whole ®@f
via

(D() H(x) = Au(t(x) gT(g7x)) f(g ™ ) (4.2)

wheret is a normalized Borel sectiont G/H — G (t o & = idy, with 7 the canonical
projectionrz: G — G/H). If the measure oG/ H is left G-invariant, the representation
will be unitary.

Kirillov's theorem establishes the following.

(1) The representations @f induced by the representations, of H are irreducible if
and only if the dimension of{ is maximal among the subordinate subalgebras.to

(2) Any irreducible representation @f can be obtained in this way up to equivalence.

(3) The representations induced by, and A,, are equivalent if and only ifi andu’
belong to the same coadjoint orbit.

Note that orbits in the same stratum are diffeomorphic and their corresponding l.u.i.r. are
formally similar but disequivalent. We are going to construct in a detailed manner the
(equivalence classes of) the l.u.i.r. 6f(1 + 1) associated with the coadjoint orbits of
variable force [3.1] and variable mass [3.5]. Thus, the reader will see how the method
works. In addition, we will display the remaining (equivalence classes of) the lL.u.i.r. of

G1+1).
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4.1. Variable force

Let us consider a point of the orbit O,, , with coordinates(s = mj, f = 0,m,h =

0,p = 0,k = 0). Two maximal subalgebras af(1 + 1) subordinate to this point
are(R,D,S,F,M,P) and (R, D, S, F, M, K). According with Kirillov’'s theory, both
subordinate subalgebras induce equivalent representations. In the first case the configuration
space of functions supporting the representation is of time—velocity kind while in the second
one is of space-time kind. For methodological purposes, we are going to consider the second
one (R, D, S, F, M, K)) but keeping in mind that fo(R, D, S, F, M, P) the development
is similar and the results are equivalent.

Let H be the group associated with the subalgebra= (R, D, S, F, M, K). A one-
dimensional representation,, , of H is given by

Ap s (€) = h) = dlfmtso) (4.3)

where 8 = (p, 8, 0,,0,0,0,v) € H andh = pR+(+(1/2av)D+oS+aF+0M+vK.

The homogeneous spac:E(1+ 1)/H = X is isomorphic toR? and can be identified
with the space-time manifold. A normalized Borel sectiork — E(1+ 1) (romr =idy
with 7 the canonical projection: G1+1) — G+ 1)/H), is defined by

t(t,x) :=(0,0,0,0,0,1¢, x, 0). (4.4)
The action of5(1+ 1) on X is given by

gt,x) =m(gt(t,x)) =@ +b,x+a+ vt) (4.5)
and the lLu.i.r.D,, ; of 5(1+ 1) is defined by

(D (9)@)(g(t, X)) = A s (T7H(g(t, x))gT(t, X)@(t, x) Vg eG. (4.6)
Since
TN (g(t, x))gT(t, x)
=(p+ 305 + 03,8 +0(b+ 1) + 5v°1%, 0 +a(t + b) + sar’ + v,
o +at + %vt2,9+vx+ %vzt,O, 0, v) 4.7)
we get that
[D1ns(9)9](g(t, x)) = @niotvxtaviilgslotatebitzart+guly ) (4.8)
or
[Dm,s(g)‘p] (t, x)
— eim[9+v(x—a)+%vz(h—z)]eix[zr+at+%a(t—h)2+%v(t—b)3](p(t _ b, X —a— U(I _ b))
(4.9)

4.2. Variable mass

Let us consider the point of the orbit O, . with coordinates(r = 0,d,s = 0, f =

0Om = 0,h = 0,p = ¢,k = 0) and take the maximal subalgebra subordinate:,to
H=(R,D,S, F, M, P). ltis straightforward to construct a one-dimensional representation
for the groupH, associated with, given by

Agc(e) =l = dédrad (4.10)
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where é = (p,58,0,2,0,0,a,0) € H andh = pR+ 8D +0S+aF +6M +aP. The

homogeneous spa(1+ 1)/H = X is again isomorphic t®? and can be identified with
the time—velocity manifold. The expression for the normalized Borel section is in this case

T(t,w) :=(0,0,0,0,0,¢,0, w) (4.11)
and the action 06(1 + 1) on X takes the form

gt,w) =m(gt(t,w)) =+ b, w+v). (4.12)

The element for developing the induction process is
T (g (r, w))gT(t, w)
=(p+ —évst —(w+v)O + %vzt) + %(w +v)?%(a + vt)

—tW+ Vb +1,8+0(+Db) —a(w+v) — JvrP(v+ 2w) — at (w + v),

o+ %atz + %vts’ +a(t —b),x +at + %vtz, 0 —a(w 4+ v)

—2v* —wvt,0,a + vt, 0). (4.13)
Finally, the l.u.i.r. is expressed as

[Dd,c(g)(p] (t, w) = eic[a+v(z—b)]éd[&-&-é)l—aw—;11v(Zw—v)(z—h)Z_aw(t—h)](p(t —b,w— V). (414)

4.3. The L.u.ir ofG(1+ 1)

We display in this section all of the (classes of equivalence) of the I.u.iﬁ(d}f—l— 1). Each
l.u.i.r., D, is labelled with a set of parameters which also characterizes a coadjoint orbit.
So we follow the same order and enumeration of the coadjoint orbits as in section 3.1.

[1.1]
[Dr,d,s,Cl(g)go] (l, U))

— eir[p+%a(4v2+w2)79w+%(tfb)(vwzfvszr%vs)]
Xeid[&—aw-k@t—aw(z—b)—%v(t—b)z(Zw—u)]eis[<7+ar+%a(t—b)2+%u(t—b)3]
x@Clat=brl oy — ).

[1.2]
[Das.c.(&)e](t, w)

— ei(dz/s)[p+%a(4v2+w2)—9w+%(t—b)(vu12—v2w+%v3)]
Xeid[Sfanré)tfaw(tfb)f%u(tfb)z(wav)]eis[a+at+%a(tfb)2+%v(tfb)3]
XeiC1[0+aw—vw(t—b)+%vz(r—b)](p(t — b, w— ).

[1.3]
[Dd,s,Cz(g)(p] (t’ w)

— d@/)lp+a@+uw?) 0wt} —b)wul—vZwt 363

Xeid[é—aw+0t—aw(z—b)—%v(t—h)z(Zw—v)]eis[a+at+%a(t—h)2+—év(t—h)3]

x@Celatt=bwly, 4y — ).

For all three of these casgse L?(R?).



700 M A Martin and M A del Olmo

[2.1]

[Dr,dA,Cl (g)@] (t’ w)
— ei”[ﬂ+%a(4vz+wz)—9w+%(t—b)(vwz—v2w+%v3)]

Xeid[éfanré)tfaw(tfb)f%v(tfb)z(wav)]eicl[aJﬁ(tfb)v](p(t — b, w—v).
[2.2]

[Da,s,c.(8)e](t, w)
— eid[éfotvathaw(tfb)f%v(tfb)z(wav)]

Xeis[a+ar+—;a(z—b)2+év(z—b)3]eicl[a+(z—b>v](p(t —b,w — ).
[2.3]

[Drs.c. ()], w)
— @rlot3a@P+uw?)—gw+3 (1—b)(vw?—vPw+30%)]
Xeis[a+m+%a(t—b>2+gv(t—b>31éc1[a+(z—b>v1(p(t — b w—v).
Also for all these three casgse £2(R?).
[3.1]

[Din,s(8)e] (2, x)
— eim[€+v(x7a)+%v2(b7t)] eis[a+ozt+ %a(tfb)er%v(tfb):S]

Xt —b,x —a —v(t —Db)).
[3.2]
[Dy.c,.c,(2)¢l(t) = eif[O'JF‘WJF%ﬂ(I*b)ZvL%v(t*b)gleicl[avL(tfb)v]eiszgo(t —b).
[3.3]

(D1 (@)e](t, w)
— drlot3a@?+w?)—0wt 3 (=b)(ww?—vPw+ 309 g flatatt—b)+ v —b)’]

Xt —b, w —v).
[3.4]

[Dr.c,.c, ()] (w) = el=omtian
[3.5]

[Dd,cl(g)w] (t, w) = eid[Bfaw+9t7aw(t7b)f%v(tfb)z(wav)]éCl[aJr(tfb)v](p(t —b,w— ).
For case [3.2p € L2(R); for the remaining oneg € L%(R?).
[4.1]

[Dym.c(2)¢] (x) = eif[a+%vb2—b(x+a)]eim[9+%uzbfva]e(i/Zf)[ﬁ2+2mI:I+C]v

2—%v3)]éC1[u—bw]eiC2b(p(w — ).

p(x —a)
where P = —id,, H = —x,C = (I — C1),l € R.
[4.2]
[Di.cy ()¢l (w) = @niotawsorb=twin=bCuznl oy ).
[4.3]
[Dy.c, ()9l (1) = &/lctet=br3=bP=Cov/l gy (4 _ py.
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[4.4]
[D,(2)p)(t) = &Pl Plp —p).
Also for all four of these caseg € £2(R).

[4.5] The representations are one dimensional.

4.4. Unitary irreducible realizations of (14 1)

Once one has the l.u.i.r. §(1+1), the u.i.r. ofG(1+1) can be obtained as follows (see the
appendix). Lety be a normalized Borel section fro6\(1+1) on G(1+1) (xop = idg 4, 1))-

Since all the l.u.i.r. OE(l—I— 1) displayed above, restricted #92(G, U(1)), belong toU (1)
we get the u.i.rf of G(1+ 1) in the following way:

U@ = Do x)@g =Dx®) g2eGA+1D. (4.15)
A suitable choice fory: G(1+1) — G(1+1) is
x@) = x((0,a,b,a,v))=1(0,0,0,0,a,b,a,v). (4.16)

For instance, the u.i.r. associated with the l.u.i.r. [3.1] (variable force) and [3.5] (variable
mass) are, respectively:

ums(g) = [Dms(X(g))(p] (t’ )C)
_ eim[9+v(x—a)+%vz(b—t)]eis[aH—%a(t—b)2+%v(t—b)3](p(t —b,x—a—v(t—b))

(4.17)

Ug,c,(8) = [Dy,c,(x (@)el(t, w)
_ eid[fanrthaw(tfb)f%v(tfb)z(wau)]eiC1[a+(t7b)v]¢(t — b, w —v). (4.18)

5. Stratonovich—Weyl kernels for variable force and variable mass

This section is devoted to the construction of th& kernels for some physical systems
whose phase spaces are some of the coadjoint orbits studied before. More specifically, we
shall consider the cases of a classical system interacting with a variable force and a system
of variable mass, both cases having the extended Galilei g@p; 1), as the symmetry
group. We have presented the method for constructing theskernels in section 2 and

we are going to apply it here.

5.1. Variable force

Let us consider the poill= (¢ =0, p =0, f =0, ¢ = 0) as the origin of the coadjoint
orbit 0,, ;. The pointu = (g, p, f, ¢) canEe considered as the origin transformed by the
group elemeng = (0,0, 0, , 0, b, a, v) of G(1+ 1) such that

4 2
a=—¢+§q+ f Py b—f

8ms3  2ms2 T

(5.1)
R I A
T 3052 s 2ms m’

The isotopy group of the origirT:,‘, is
T={yeGly=(p6000,0,00). (5.2)
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The l.u.i.r. of G restricted tol” are given by

[Dhs (N1 (1, x) = "9, x)  (m,s5) € R% (5.3)
The sw kernel can be defined at the origin as follows:

[Q0)¢](t, x) := 22p(—t, —x). (5.4)

This kernel is covariant as can be proved by checking thay), 2(0)] =0,y € T. The
value of thesw kernel in any pointt = (g, p, f, ¢) of the orbit is
[ @w)e](, x)

= [D(©)Q(0)D(e) 9]¢, x)

— 22ém[2v(a—x)+v2(b—t)]eix[Za(t—hH—%v(t3—h3)+vbt(h—t)](p(2b —t, 2a — x) (55)
with ¢ = (0,0, 0, «, 0, b, a, v) given by (5.1).

It is straightforward to prove that @ (g, p, f, ¢)] = 1. The property of traciality (2.1)
can be checked using the equivalent statement (see [$]J@yf2 (v)] = §(u), Yu € O, 5:

Q2. p. f.$)]
- ﬁ2<r,x|9<0>9(q,p, Fo®lt,x) dr dr

=22/ (t,x|Q(q, p, f,$)| —t, —x) dr dx
RZ

— 2
=20 8(f)/ eXp{—im [2p(q +x) + pzz“
R? m m
3

X exp{—ia |:2¢t + pti| } 8(g) dr dx
3m

— 220, 5(f) 8(6])/ ezipxefzi[p2/2m+0¢+ptz/6m]t dr dx
R2

=205(H5@)8(p) [ &% a
R
=38(f)8(p)é(q)é(o). (5.6)
On the other hand we have computed the tri-kernel (2.6) obtaining that

[, p. £, O, P, f )24 , p", 17 ¢")]
= 2*exp(—im[2v(a’ — d") + 20 (@" — a) + 2v"(a — d’)

+02(b' — ") +v2(b" — b) + v"?(b — b)]}

x exp{—io[(2a — vb(D" — b' + b)) (" — b)

+2a" —V'b'(=b" + b+ b)) (b —D")

+Qo" = "B B+ B = D)0 = b) + Ju(b" = b+ )7 = b?)

+30' (b 6+ 5)° = %) + 3" (0" + 6~ b)° = b))} (5.7)
For the sake of simplicity we have preferred to write the tri-kernel in terms of the group
elementg = (0,0, 0, «, 0, b, a, v), which according to (5.1) appears as an implicit function

of the canonical coordinates of the orbit. This preserves the symmetric aspect of the formula,
which resembles that of the tri-kernel for the Heisenberg group [2].
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5.2. Variable mass

In this case we have chosen as the origin of the orbit the point of coordifatesk =
0,¢ =0, u =0, e =0). By the action of the group element
k—cp 1 , — 1 ,
= - = — = 0, — 5.8
g <O, 5 B S LY (5.8)

we transform the origin into the poimt= (k, ¢, u, €) of the orbit Os .. The isotopy group
of the origin is

?E {]/ EE']/ = (/O, 8, g, Oa 07 O,G,O)}

and the restriction of the representatiby . of GtoT is

[Da.c(1)@)(t, w) = €< o(t, w). (5.9)
Taking as theansatzfor the value of thesw kernel at the origin
[Q0)p] (¢, w) 1= 2%p(—t, —w) (5.10)

and since D(y), ©2(0)] = 0 we can define thew kernel at any point of the orbit using the
covariance property (2.2); we obtain that

[Qk, ¢, 1, €)pl(t, w)
=[D()Q0)D(g) *¢](t, w)
— 92dd[(—2¢/d—pd?) (t—11)— Qk—cp) [d— ) (p+w)+ (p+w) (1—)?]
x@ 2= 2u — t, —2¢ — w) (5.11)

with ¢ given by (5.8).
We can prove the traciality property and compute the tri-kernel. We get, respectively,
that

tr[QO)Q (K, ¢, i, €)]
= / (t, w|RO)Q K, ¢, 11, €)|t, w) df dw
R2

= 22/ (t, w|Qk, p, pn, €)| — 1, —w) dr dw
R2

— 4 | e idl(=26/8-1g?/2)(—i =)= (k=) [5=puP)G—w)-+¢ (p—w) (=1 —)?]
R2

x €PN w(2u 41, —2¢ + w) df dw
_ 228(’“) 3(¢)/ e72iere72ikw dr dw
R2

= 8(k)3(¢) () 8(e) (5.12)
and
[k, ¢, , QK ¢, ', )K", ¢", 1", €")]
= 2'expl2iclp (1" — 1) + &' (i — 1) + ¢ (' — ]}
x exp(—is[(=2/8)(e(u" — ') + €' (u—p") + €' (W — )
+20(¢p" — @) + 2 (p — ") + 22" (¢ — ) + (¢ — ¢") (" — )2
+¢'@" — ) — 1"+ ¢" (¢ — ¢ — 2]} (5.13)
wherea = (k —cu)/8 — %q&uz and the remarks made regarding (5.7) remain also valid
here.
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We should finish this section by noting that the tri-kernels just calculated permit the
definition of twisted products, which provide the basic tool for the Moyal formulation of
guantum mechanics.

6. Conclusions

As we have mentioned above, central extensions of the symmetry groups of physical systems
provide us with the opportunity of introducing interactions in a simple way. Remember that
the central extension associated with the commutatoH] = F in the Galilean(1+1) case
is physically interpreted as a constant force. Despite these expectations it was impossible to
obtain thesw correspondence in some cases—for instance when mass and force extensions
are simultaneously considered @1 + 1) [2]. Now, in this paper we have obtainedsa
kernel for a massive one-dimensional Galilean system interacting with a non-constant force.
It is worth mentioning that for the remaining + 1) kinematical groups (Poincarand
Newton—Hooke) there is no double extension, i.e., the central extension of their first central
extension is trivial [2].
Research on thew correspondence faf2 + 1) Poincaé and Newton—Hooke systems
is in progress.
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Appendix

A.1. Central extensions of groups and cohomology

A group E is a central extension of the group by the Abelian groupA if the following
sequence is exact:

1—>A—i>E—p>G—>1.

It is well known that research on the central extensions, up to equivalence, forms a
cohomological problem [18, 19] in the sense that an extensiofi bf A has associated
with it an action®: G — AutA and an elementyf] € H3(G, A). So, there exists a
bijection between the set of classes of central extensions bf A, Extg(G, A), and the
second cohomology group 6f, H3(G, A). We will not discuss here the topological details
related to this problem.

On the other hand, the construction of the central extensions of a Lie grdaypanother
(Abelian) Lie groupA is equivalent (at least locally) to finding the central extensions of the
Lie algebra ofG, G, by the Lie algebraA, of A. For the cases studied in this paper, the
groups are connected and simply connected30G, A) = H?(G, A).

We present now a short review on the cohomology of Lie algebras [19].

Let us consider a Lie algebi@ and aG-module A, i.e. A is a linear space supporting
a linear representatiofr of G which satisfies

Y(X)YY) =y )Y (X) = ¢ (X, YD. (A.1)
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An n-cochain is am-linear alternating mapping,: G x G x * iMes . ¢ . A The
space ofn-cochains is denoted bg” (G, .A). For everyn € N there exists a linear map
8. C'(G, A) — C"™(G, A) defined by

(an(,())(Xl, L] Xn+l)

n+1 ] .

= (_1)l+lw(Xl)a)(Xla LI Xi—J.’ Xia Xi+1a LI Xl‘l+1)
i=1
+ D o(Xn X Xy XL K X ) (A.2)
i<j
where the hat of{ indicates thatX is omitted. It is possible to prove thdto s, = 0, Vn.
The operatos, called the coboundary operator, is defined®@, A) = B,-,C" (G, A)
in such a way thaé|c» = 8, and satisfies? = 0.
In C"(G, A) we can consider the following subsets:

B"(G, A) = {w € C"|Fa € C"! such thaiw = Sa}
Z"(G, A) ={w e C"|bw = 0}.
It is obvious thatB"” C Z". The elements oB” and Z" are calledn-coboundaries and
n-cocycles, respectively. The-cohomology groupH” (G, A) is defined byH" = Z"/B".
In our particular case thg-module isR and the representatior = 0. The space
C"(G, R) can be identified with
Grantimes, o=

whereG* is the vector space that is the dual@f The 2-cocyclesv are characterized by
the property

o([X1, X2], X3) + ([ X3, X1], X2) + o ([X2, X3], X1) =0 (A.3)
and the 2-coboundaries by
(X1, X2) = —a([X1, X2]) (A.4)

with « a 1-cocycle.

As an example, the computation of the second cohomology grou@(bf+ 1) is
performed as follows: let us consider a 2-cochain as an elemantlof 1)* A G(1+ 1)*,
i.e, o =mK* A P*+ fP* AN H*+aH* A K*, where{H*, P*, K*} constitutes a basis of
G(1+ 1)*, which is the dual of the basigH, P, K} of G(1 + 1), andm, f,a € R. The
condition for the 2-cocycle (A.3) is trivially satisfied by, P and K with the commutation
rules (3.2). However, the condition for the 2-coboundary (A.4) implies that the 2-cocycle
H* A K* is trivial, i.e., a 2-coboundary. Hence,

H3G(1+1),R) = {[m, fl/m, f e R} =R2 (A.5)
The two non-trivial 2-cocyclesK* A P* and P* A H* are linked with the new Lie
commutators K, Pl = mlI and [P, H] = f1, respectively (see (3.3)).

For the two groupsG(1+ 1) and G(1 + 1) involved in this paper,H?(G,R) =
H?(G,U(1)). A 2-cocycle of the classn|, f] € H?(G(1 + 1),U(1)) is obtained by
integrating the new commutation rules, which correspond to the extended algebra. In other
words, we compute the group law for the extended group (see (3.4)). So,

1
Wi r(g.8) = exp{im <ab’ + 2vb’2)}

X exp{if <va’ + ;vzb/>} 2.8 €GA+1). (A.6)
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Similarly for an elementd d, s, m, f] € H*(G(1+ 1), U(1)) we find the following lifting:

Wr.d,s,m,f (g’ g/)
= explir(vd’ + 3va’ + v}
x explid(va’ — b0’ —va' (b + b') — 2v%b"? — 1bb'v?))
x explis(—ba — Jab® — abb’ — Jvb"® — Jvbb'?)}

x explim(—3bb'v2ab’ + Fvb?)} expli f (va' + 3v°0)} (A7)

with g, g’ € G(1+ 1). Note that in (3.4) and (3.6) we have considered representatives of
the cohomology classes,[1] and [1 1, 1, 1, 1], respectively.

A.2. Linearization of projective representations of Lie groups

As is well known, the projective unitary irreducible representation (p.u.i.r.) of a gtoup
is a homomorphismpP, of G on PU(H), the group of projective unitary operators on the
Hilbert spaceH. Moreover PU(H) = U(H)/U (1), whereU (H) is the group of unitary
operators orf{ and U (1) the group of operators of the formi, « € C, |«|> = 1. In other
words, we have the exact sequence

15 U1 S UMH) S PUH) — 1.

When we say thal{ is a unitary representation up to a factor or a realization (u.r.) we are
usually making reference to a mapping@fon U (H) such thatr o U is a p.u.r. ofG. So,
if U is a unitary realization o5

U@HU(g) =&(g',9U(g'g) VgeG

where&: G x G — U(Q) is called a factor system af. The associativity of/ imposes
the following condition org:

&(g1, 82)6(g182, 83) = &(g2, 83)6(g1, 8283)

i.e., £ is a 2-cocycle { € Z%(G, U(1))).

The unitary equivalence of two u.i.r. off, U and U’, is defined byU’'(g) =
A TU ()Tt (Vg € G), with T a unitary operator and for a map G — U(1). This
implies that their corresponding factor systems differ in a 2-coboun@aryas is easy to
prove. So, the classes (of equivalence) of the p.u.i.G afre in one-to-one correspondence
with the elements oH?(G, U (1)).

The pair (G, p) is said to be a splitting group [20] of a Lie growpif p: G — G is
an epimorphism and any p.u.i.r 6f can be lifted to a l.u.i.r. oz mapping Kerp = A to
U(1). On the other hand, a L.u.i.iD of G is said to beA-split if D(A) c U(1). These
representations of produce by quotient the p.u.i.r. @.

In the following we will only consider central extensions 6f by an Abelian group
as candidates for splitting groups Gf. It can be proved that for each normalized Borel
sectiony: G — G (p o x = idg) and for eachA-split l.u.r. of G there exists a u.i{ of
G given byU = D o x, whose factor system i& = D o W,,, whereW, is the 2-cocycle
associated with the central extension

1545652651
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defined byy, i.e., W, (g, &) = x(g)x(g)(x(gg")~*. This can be illustrated by the follow-
ing commutative diagram:

1 — U S vumn = PUH) — 1
1 Dla +D NUu TP

1 — A —l>é—p> G — 1

A ‘minimal’ splitting group G of G or representation group is a central extensionGof
by the dual of H2(G, U(1)), H3(G, U(1)), such thatH?(G, U (1)) is contained in the
derived group ofG [17]. Remember that the dual of an Abelian group is the group of its
u.i. representations.

In order to show how the theory works, let us construct that ‘minimal’ splitting group
for G(1+1). The non-vanishing Lie commutators of the central extensio@(d@f+ 1) are

[K,H] =P [K, P] =mI [P, H] = fI m, f € R.

The second cohomology group 6f(1+ 1), H*(G, U(1)), and its dualH2(G, U(1)) are
both isomorphic toR?. Note that juf] — €@/ ¢ U(1), (o, 0) € R? Fixing the
values ofm = 1 and f = 1, we use the notatiom/ = M and fI = F, and ‘integrating’
the Lie commutators of the Lie algebra generatedMbyF, H, P and K we get a group
with the law given by (3.4). A lifting of 2, f] € H%(G, U(1)) is given by (A.6).
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