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Abstract. The unitary irreducible realizations (representations up to a factor) of the maximal
non-trivial central extension of the(1 + 1) Galilei group, G(1 + 1), are obtained via the

linear unitary irreducible representations of its maximal non-trivial central extension,G(1+ 1).
As an application we construct the Stratonovich–Weyl correspondence, which allows Moyal
quantization of classical systems, for two cases of great physical interest: a system in a external
variable force field and a variable-mass system.

1. Introduction

This paper is part of a wider programme started some years ago, which includes, as one of
its goals, the construction of the unitary irreducible realizations (or representations up to a
factor) of the kinematical groups of the space-time. Thus, we have constructed the locally
operating representations of some of these groups—for instance: the Galilei(3 + 1) group
in [1]; the unitary irreducible realizations of the(1+1) kinematical groups (Galilei, Poincaré
and Newton–Hooke) in [2]; and the case of the Galilei(2+ 1) group in [3]. Following this
project, we present here the realizations of the maximal non-trivial central extension of the
Galilei (1 + 1) group,G(1 + 1). They have been obtained by means of obtaining linear

unitary irreducible representations of a new group,G(1 + 1), resulting from the central
extension ofG(1 + 1) by U(1).

Unitary irreducible realizations (u.i.r.) can be applied to quantize, in the sense of
Moyal [4], classical systems which have connected Lie groups as symmetry groups. This
is carried out via the Stratonovich–Weyl (SW) correspondence (see [5]). This tool allows
us to enlarge the phase-space formulation of quantum mechanics, given through the Moyal
formalism [4], to physical systems with spin [6], relativistic systems [7] and systems in
interaction [2, 3, 8] (see [9] for a review).

The construction of theSW correspondence requires the knowledge of the (classes of
equivalence of) projective unitary irreducible representations (p.u.i.r.) of the symmetry
group G as well as its coadjoint orbits. In addition we must put the two elements in
correspondence. Note that (elementary) classical systems are associated with the coadjoint
orbits of their corresponding symmetry groups. These orbits can be obtained taking
into account the Kirillov–Kostant–Souriau theorem (see [10]), which establishes a local
diffeomorphism between the homogeneous symplectic spaces of a connected Lie groupG

and the coadjoint orbits of its central extension byU(1). On the other hand, the support
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690 M A Martı́n and M A del Olmo

space of a p.u.i.r. (u.i.r.) of the symmetry group is the quantum counterpart of a coadjoint
orbit. Note that the correspondence between coadjoint orbits and p.u.i.r. (u.i.r.) for the
groups involved in this paper is one to one—this is not the case in general.

The computation of the u.i.r. ofG can be linearized by working with a new group,
a central extension of the original one, whose linear unitary irreducible representations
(l.u.i.r.) provide the origin for the u.i.r. ofG. Moreover, this simplifies the research into
the coadjoint orbits and the correspondence with the p.u.i.r. ofG.

In [2] we constructed theSW kernels for physical systems associated with the one-
dimensional kinematical groups: Galilei, Poincaré and Newton–Hooke. The central
extensions of these groups are physically interpreted either as masses or as constant forces
according to the group considered. So, we can introduce interactions in a system via central
extensions of its symmetry group.

Recently, classical systems associated with a certain central extension ofG(1 + 1)
have been studied [11]. Thus, classical systems with non-constant acceleration (but whose
derivative with respect to time—the jerk—is constant), can be considered. In terms of group
theory, the force is no longer constant, because its corresponding infinitesimal generator now
fails to be central and its commutator with the infinitesimal generator of the time translations
provides the origin for a new central extension, directly related to the jerk. Systems with
variable mass appear in a similar way.

In this paper we also study carefully theSW correspondence for some of these Galilean
systems.

The paper is organized as follows: section 2 presents a short review of theSW

correspondence. In section 3 we study the maximal non-trivial central extension ofG(1+1),

G(1 + 1), and its coadjoint orbits. Section 4 deals with the problem of constructing the

l.u.i.r. of G(1 + 1). A complete list of representives for each equivalence class of l.u.i.r. is

given. The procedure for obtaining the u.i.r ofG(1+ 1) from the l.u.i.r. ofG(1+ 1) is also
demonstrated. In section 5 we develop theSW correspondence for two particular elementary
physical systems: (1) the case of variable force; and (2) the case of variable mass. We
conclude with some remarks and an appendix on the group extensions, cohomology and
linearization of projective unitary representations of Lie groups.

2. The Stratonovich–Weyl correspondence

The SW correspondence [5, 9] is a map that assigns linear operators on a Hilbert space to
functions defined on a phase space. TheSW correspondence profits from the existence of a
(connected) Lie group,G, of the symmetry of the physical system under study. Thus, the
phase space considered is a coadjoint orbit of this Lie group and the Hilbert space is the
support space of a p.u.i.r. ofG.

The first difficulty that arises is the construction of the p.u.i.r. ofG; however, we are
going to linearize the problem using a splitting groupG of G, i.e., a Lie groupG such that
any p.u.i.r. ofG can be lifted to a l.u.i.r. ofG and, reciprocally, every l.u.i.r. ofG provides
a p.u.i.r. ofG (see the appendix for more details).

A second one is that of assigning to each l.u.i.r. ofG a coadjoint orbit ofG. This is
carried out by the method of Kirillov [10] for constructing induced representations in the
case of nilpotent groups.

The SW correspondence is performed via the existence of theSW kernel,Ω, which is
a mapping transforming each pointu of a given coadjoint orbitO of G into a selfadjoint
operator,Ω(u), on the Hilbert spaceH supporting the l.u.i.r. associated with the orbit. This
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mapping satisfies the following properties:

(1) u 7−→ Ω(u) is one to one;
(2) Ω(u) is selfadjoint,∀u ∈ O;
(3) tr[Ω(u)] = 1, ∀u ∈ O—this trace is usually defined in a generalized sense;
(4) traciality:∫

O

tr[Ω(u)Ω(v)]Ω(v) dµ(v) = Ω(u) (2.1)

whereµ is theG-invariant measure onO—this property means that tr[Ω(u)Ω(v)] behaves
like a Dirac deltaδ(u− v) with respect to the measureµ(v);

(5) covariance:

U(g)Ω(u)U(g−1) = Ω(gu) ∀g ∈ G; ∀u ∈ O (2.2)

with U(g) the l.u.i.r. ofG associated with the orbitO andgu the transformed point ofu
produced by the coadjoint action ofg.

Starting from aSW kernel forO, its associatedSW correspondence is defined as follows.
If f (u) is a function onO, an operatorA, on H, is associated with it via

A =
∫
O

f (u)Ω(u) dµ(u). (2.3)

The property of traciality allows us to obtain an inversion formula:

WA(u) ≡ tr[AΩ(u)] =
∫
O

f (v)tr[Ω(u)Ω(v)] dµ(v) = f (u). (2.4)

The function,WA(u), is usually called the Wigner function ofA. Traciality also yields the
following expression:

tr[AB] =
∫
O

WA(u)WB(u) dµ(u) (2.5)

allowing one to obtain quantum averages as in classical statistical mechanics.
The applicability of theSW correspondence is finally based on the construction of a

non-commutative product—the so-called star or twisted product—for generalized functions
on phase space equivalent to the product of operators on its corresponding Hilbert space.
We can define this twisted product of two functionsf (u) andg(u) onO as

(f ∗ g)(u) =
∫
O

∫
O

tr[Ω(u)Ω(v)Ω(w)]f (v)g(w) dµ(v) dµ(w). (2.6)

It is easy to verify that

(WA ∗WB)(u) = WAB(u) (2.7)

and ∫
O

(f ∗ g)(u) dµ(u) =
∫
O

f (u)g(u) dµ(u). (2.8)

The term tr[Ω(u)Ω(v)Ω(w)] is called the tri-kernel of theSW correspondence. We will
below give an explicit expression for it, together with the coadjoint orbit (phase space) and
the SW kernel, completing the quantization for the cases under consideration.

The construction of aSW kernel requires the following steps: (1) choose an arbitrary
point u0 of O as origin; (2) produce anansatzfor a selfadjoint operator of trace one (with
respect to a suitable trace)Ω(u0); (3) finally, define the kernel on the whole ofO via

Ω(u) = Ω(gu0) = U(g)Ω(u0)U(g
−1) (2.9)
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whereg is an element ofG such thatgu0 = u. Note that this kernel is well defined if and
only if

Ω(u0) = U(γ )Ω(u0)U(γ
−1) ∀γ ∈ 0u0 (2.10)

where0u0 is the isotopy group ofu0, i.e.,0u0 = {γ ∈ G|γ u0 = u0}. This property, proved
in [2], implies thatΩ(u), defined as above, is covariant. Reciprocally, ifΩ(u) is covariant,
the property (2.10) holds. Remark that the covariance property guarantees that theSW kernel
is well defined in the coadjoint orbitO—in other words, it is independent of the choice of
section fromO onG.

It is interesting to include here a simple example in order to illustrate the meaning of
the above construction for the standard quantum theory.

The main ingredient in the Weyl–Wigner–Moyal (or briefly Moyal) formulation of
quantum mechanics [12, 13] is the twisted or Moyal product for functions on phase
space. This product can be defined by using the Weyl mapping, i.e., a linear isomorphism
between the space of the above-mentioned functions and the space of operators on a
standard Hilbert space. The Weyl mapping can be introduced through the Grossmann–
Royer operators [14, 15], which are defined as follows:

[K(q,p)ϕ](x) = 2ne2ip·(x−q) ϕ(2q − x) (2.11)

where the standardR2n phase space with coordinates(q,p) is assumed. These operators
act as integral kernels in such a way that to a functionf there corresponds the operator

W(f ) = 1

2π

∫
R2n
f (q,p)K(q,p) dq dp. (2.12)

The mapping is invertible, so the Moyal product can be defined by

f ∗ g = W−1(W(f )W(g)) (2.13)

for which the explicit expression is

(f ∗ g)(u) = 1

π

∫
R4n
f (v)g(w) exp[i(uJv + vJw + wJu)] dv dw (2.14)

whereJ is the matrix(
0 In

−In 0

)
and whereIn and 0 are then-dimensional identity and then× n zero matrix, respectively,
andu,v,w stand for(q,p), (q′,p′), (q′′,p′′).

Now, we can construct theSW correspondence for the Heisenberg groupH 2n+1, i.e., the
setR2n+1 endowed with the following product:

(a, b, c)(a′, b′, c′) =
(

a + a′, b + b′, c + c′ + 1

2
(a · b′ − a′ · b)

)
(2.15)

with a,a′, b, b′ ∈ Rn andc, c′ ∈ R. The corresponding Lie algebra,H2n+1, is generated by
the identity operator inL2(Rn), I , and then-dimensional position and momentum operators
Q,P with non-vanishing commutation relations [Qi, Pj ] = iIδij . The coadjoint orbits of
dimension greater than zero are all isomorphic toR2n and yield the same kind of induced
representations. A l.u.i.r. ofH 2n+1 associated with the coadjoint orbit specified byz = 1 is
(let us write(x,y, z) for the coordinates on a basis of(H2n+1)∗ dual to the basis{Qi, Pi, I }
of H2n+1):

[U(a, b, c)ϕ](ξ) = exp

[
−i

(
c + b · ξ + 1

2
a · b

)]
ϕ(a + ξ) (2.16)
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whereϕ ∈ L2(Rn).
Taking (q = x/z, p = y) as canonical coordinates on the orbit and choosing the point

(0, 0) as the origin(u0) we can construct theansatz

[Ω(u0)ϕ](ξ) = 2n ϕ(−ξ) (2.17)

and obtain from it theSW kernel and tri-kernel which coincide with (2.11) and the integral
kernel in (2.14), respectively.

3. The doubly extended Galilei (1+ 1) group

The Galilei groupG(1+1) is the group of transformations of the(1+1) Newtonian space-
time. Let(t, x) be the time and space coordinates of a point; the action of a generic element
g ≡ (b, a, v) = ebHeaPevK ∈ G(1 + 1) on this point is

(t ′, x ′) = g(t, x) = (t + b, x + a + vt) (3.1)

whereb anda are the parameters of time and space translations andv corresponds to the
Galilean inertial transformation. The Lie algebra ofG(1+1), G(1+1), is generated byH,P
andK, which are the infinitesimal generators of time and space translations and Galilean
inertial transformations, respectively. The Lie commutators of these generators are

[K,H ] = P [K,P ] = 0 [P,H ] = 0. (3.2)

Note that the Lie algebra just defined is isomorphic to that of the Heisenberg group
H 2+1, which is itself a central extension of the group of translations of the phase plane.

3.1. Central extension ofG(1 + 1)

The algebraG(1+1) admits a maximal non-trivial central extension byR2 [2, 16] (see also
the appendix). LetG(1 + 1) be the central extended algebra ofG(1 + 1) with generators
H,P,K,M andF , and non-vanishing commutation relations

[K,H ] = P [K,P ] = M [P,H ] = F (3.3)

whereM andF are the two central generators linked with the extension. From a physical
point of view M is related to the mass of an elementary physical system andF with a
constant force field acting on this system, taking into account the theory of the p.u.i.r. of
G [1, 17]. The group law forG(1 + 1) is

g g′ =
(
α + α′ + ab′ + 1

2
vb′2, θ + θ ′ + va′ + 1

2
v2b′, b + b′, a + a′ + vb′, v + v′

)
(3.4)

with g = (α, θ, b, a, v) = eαFeθMebHeaPevK [2]. The action on the space-time is like (3.1),
i.e., (t ′, x ′) = g(t, x) = (t +b, x+a+vt), because the central generators act trivially on it.

3.2. Central extension ofG(1 + 1)

The algebraG(1+ 1) admits a new maximal non-trivial central extension byR3, G(1+ 1),
as is easy to prove by applying the cohomological methods shown in the appendix. This
extended algebra is eight dimensional [11] and the non-zero Lie brackets in terms of the
basis{H,P,K,M,F,R,D, S} are as follows:

[K,H ] = P [K,M] = R [H,M] = −D [H,P ] = −F
[K,P ] = M [K,F ] = D [H,F ] = −S. (3.5)
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Note thatM andF are no longer central generators, but this role is now played byR,D

andS. The group law forG(1 + 1) is given by

g g
′ = (ρ + ρ ′ + vθ ′ + 1

2v
2a′ + 1

6v
3b′, δ + δ′ + vα′ − bθ ′ − va′(b + b′)− 1

4v
2b′2

− 1
2bb

′v2, σ + σ ′ − bα′ − 1
2ab

′2 − abb′ − 1
3vb

′3 − 1
2vbb

′2, α + α′ + ab′

+ 1
2vb

′2, θ + θ ′ + va′ + 1
2v

2b′, b + b′, a + a′ + vb′, v + v′) (3.6)

whereg ≡ (ρ, δ, σ, α, θ, b, a, v) = eρReδDeσSeαFeθMebHeaPevK ∈ G(1 + 1). The inverse

g
−1

of an elementg is

g
−1 = (−ρ + θv − 1

2av
2 + 1

6bv
3,−δ − θb + αv − 1

4v
2b2,−σ − αb + 1

2ab
2 − 1

3vb
3,

−α + ab − 1
2vb

2,−θ + av − 1
2bv

2,−b,−a + vb,−v). (3.7)

3.3. Coadjoint orbits ofG(1 + 1)

LetG be a Lie group,G its associated Lie algebra andG∗ the dual space ofG. There exists
an action ofG on G, called the adjoint action, defined by adX(Y ) = [X, Y ], X, Y ∈ G.
Exponentiation gives the adjoint action of the groupG on its Lie algebraG: AdeX (Y ) =
eadX (Y ), where eX ∈ G andX, Y ∈ G. The coadjoint action ofG on G∗ is given by

〈coAdg a,X〉 = 〈a,Adg−1X〉 g ∈ G,X ∈ G, a ∈ G∗ (3.8)

where〈 , 〉 denotes the product ofG∗ andG. The coadjoint action of a generic element

g = (ρ, δ, σ, α, θ, b, a, v) ∈ G(1 + 1)

on a point ofG(1 + 1)∗ of coordinates(r, d, s, f,m, h, p, k) in a basis dual to the basis

{R,D, S, F,M,H,P,K} of G(1 + 1) (and in this order) is

r ′ = r d ′ = d s ′ = s

f ′ = f − dv + sb m′ = m− rv + db

p′ = p −mv + f b + 1
2rv

2 − dvb + 1
2sb

2

k′ = k + pb +m(a − bv)+ 1
2f b

2 + r(θ + 1
2bv

2 − av)+ d(α − 1
2vb

2)+ 1
6sb

3

h′ = h− pv + 1
2mv

2 − f a − 1
6rv

3 − d(θ − av)− sα.

(3.9)

Note that this expression is equivalent to, but not identical, the one obtained in [11] because
different, but equivalent, 2-cocycles are used.

For the sake of simplicity we will omit from now on bars denoting extensions over
elements of a group determined when the group is arranged in advance.

The coadjoint orbits for this action are classified by displaying their invariants as follows
(note that in this classificationCi denotes a constant).

(1) The three extensions are non-vanishing.

[1.1] The invariants characterizing this coadjoint orbit are:r, d, s, and

p − dmf

d2 − rs
+ sm2 + rf 2

2(d2 − rs)
= C1.

This orbit is four dimensional (4D).
[1.2] Now the invariants are:d, s, (r = d2/s) andm− (d/s)f = C1. It is also 4D.
[1.3] This orbit is 2D and is determined byd, s, (r = d2/s), (m = (d/s)f ), p−f 2/2s =

C2 andk + (d/s)h− (C2/s)f − f 3/6s2 = C3.
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(2) Two non-vanishing extensions.

[2.1] (s = 0), r, d, p −mf /d + rf 2/2d2 = C1.

[2.2] (r = 0), d, s, p −mf /d + sm2/2d2 = C1.

[2.3] (d = 0), r, s, p + sm2 + rf 2/2rs = C1.

All of these orbits are 4D.

(3) One non-vanishing extension.

[3.1] (s 6= 0), s,m. It is 4D.
[3.2] (s 6= 0), (m = 0), s, p − f 2/2s = C1, k − fp/s + f 3/3s2 = C2. It is 2D.
[3.3] (r 6= 0), r, f. This orbit is 4D.
[3.4] (r 6= 0), (f = 0), r, p −m2/2r = C1, h−mp/r +m3/3r2 = C2. It is 2D.
[3.5] (d 6= 0), d, p −mf /d = C1. This orbit is 4D.

(4) The three extensions vanish(r = d = s = 0).

[4.1] m, f, p2 − 2mh− 2f k = C1.

[4.2] (f = 0), p2 − 2mh = C1.

[4.3] (m = 0), p2 − 2f k = C1.

[4.4] (m = f = 0), (p 6= 0)p = C1.

[4.5] (m = f = p = 0). Here the orbit is a point.

All of the remaining coadjoints orbits of this case (4) are 2D.

Now we analyse in more detail two of these sets of orbits because of the physical
meaning, which we will see in section 5.

3.3.1. Variable force Let us consider case [3.1] of the above classification. The coadjoint
action is given by

s ′ = s f ′ = f + sb m′ = m

p′ = p −mv + f b + 1
2sb

2

k′ = k + pb +m(a − bv)+ 1
2f b

2 + 1
6sb

3

h′ = h− pv + 1
2mv

2 − f a − sα

(3.10)

where

(0, 0, s ′, f ′, m′, h′, p′, k′)

is the point obtained by transformation of

(0, 0, s, f,m, h, p, k)

under the action of the element

g ≡ (ρ, δ, σ, α, θ, b, a, v).

Note that expression (3.10) is obtained directly from (3.9) by makingr = d = 0. In other
words, we can consider in this case just the extension ofG(1 + 1) by 〈S〉 ≡ R.

The invariants characterizing the orbits arem and s or equivalentlym, j = s/m

(j ≡ jerk). These orbits will be denotedOm,s ≡ Om,j and are 4D. A set of canonical
coordinates({q, p} = 1, {f, φ} = 1) for these orbits is given by

q = k

m
p f φ = 1

s

(
h− p2

2m
+ f

k

m

)
. (3.11)
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The symplectic 2-form is dω = dq ∧ dp + df ∧ dφ. In these coordinates the coadjoint
action (3.10) is rewritten as

q ′ = q + p

m
b + 1

2

f

m
b2 + 1

6
jb3 + a − bv

p′ = p −mv + f b + 1
2jmb

2 f ′ = f + jmb

φ′ = φ + (q + a)b + 1

2

( p
m

− v
)
b2 + 1

6

f

m
b3 + 1

24
jb4 − α.

(3.12)

We can give a dynamical interpretation using the temporal evolution of the phase space
coordinates, which is given, from (3.12), by

q(t) = q(0)+ p(0)

m
t + f (0)

2m
t2 + 1

6
j t3

p(t) = p(0)+ f (0)t + 1
2jmt

2 f (t) = f (0)+ jmt

φ(t) = φ(0)+ q(0)t + 1

2

p(0)

m
t2 + 1

6

f (0)

m
t3 + 1

24
j t4.

(3.13)

Note that the temporal evolution of the position coordinate corresponds to a Galilean system
with non-constant accelerationa but with da/dt = j , a constant (the jerk). Taking into
account the evolution equations of this system:

dp

db
= f

df

db
= mj

dq

db
= p

m

dφ

db
= q (3.14)

it is easy to find the corresponding Hamiltonian

H = p2

2m
− f q + jmφ. (3.15)

3.3.2. Variable mass Let us consider now the case [3.5]. The coadjoint action, taking
r = s = 0 in (3.9), is

d ′ = d f ′ = f − dv m′ = m+ db

p′ = p −mv + f b − dvb k′ = k + pb +m(a − vb)+ 1
2f b

2 + d(α − 1
2vb

2)

h′ = h− pv + 1
2mv

2 − f a − d(θ − av).

(3.16)

The invariants characterizing the orbits turn out to be the real parametersd and
c = p −mf /d, so we have a stratum of 4D orbitsOd,c. ForOd,c

k φ = f

d
µ = m

d
ε = h− f c

d
− mf 2

2d2
(3.17)

is a set of canonical coordinates, with a symplectic 2-form given by dω = dk∧dφ+dµ∧dε.
The coadjoint action (3.16) in these new coordinates is

µ′ = µ+ b φ′ = φ − v

k′ = k + d

(
α + aµ+ (φ − v)

(
µb + b2

2

))
+ cb

ε′ = ε − d

(
θ + a(φ − v)+ b

2
(φ − v)2

)
.

(3.18)
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Once more, we can give a dynamical interpretation by deducing the laws of motion:

φ(t) = φ(0) µ(t) = µ(0)+ t

k(t) = k(0)+ dφ(0)

(
µ(0)t + t2

2

)
+ ct

ε(t) = ε(0)− d

2
φ(0)2t

(3.19)

and the corresponding evolution equations:

dφ

dt
= 0

dµ

dt
= 1

dk

dt
= c + dµ φ

dε

dt
= −d

2
φ2 (3.20)

associated with the HamiltonianH = 1
2dµφ

2 + cφ + ε.

4. Linear unitary irreducible representations of the doubly extended Galilei (1+ 1)
group

In order to construct the l.u.i.r. ofG(1+ 1) we are going to use the theory of Kirillov [10]

becauseG(1 + 1) is a nilpotent group of class four. First of all we present a short review
of this theory.

Let us choose an elementu in each coadjoint orbit; the subalgebraH of G such that
u([H,H]) ≡ 〈u, [H,H]〉 = 0 is said to be subordinate tou. The functionalu allows the
construction of a unitary one-dimensional representation1u of the subgroupH associated
with H via

1u(e
h) = ei〈u,h〉 ∀h ∈ H. (4.1)

Starting from this representation1u of H we induce a representation for the whole ofG
via

(D(g)f )(x) = 1u(τ(x)
−1gτ(g−1x))f (g−1x) (4.2)

whereτ is a normalized Borel sectionτ: G/H −→ G (τ ◦ π = idX, with π the canonical
projectionπ: G −→ G/H ). If the measure onG/H is left G-invariant, the representation
will be unitary.

Kirillov’s theorem establishes the following.

(1) The representations ofG induced by the representations1u of H are irreducible if
and only if the dimension ofH is maximal among the subordinate subalgebras tou.

(2) Any irreducible representation ofG can be obtained in this way up to equivalence.
(3) The representations induced by1u and1u′ are equivalent if and only ifu andu′

belong to the same coadjoint orbit.

Note that orbits in the same stratum are diffeomorphic and their corresponding l.u.i.r. are
formally similar but disequivalent. We are going to construct in a detailed manner the

(equivalence classes of) the l.u.i.r. ofG(1 + 1) associated with the coadjoint orbits of
variable force [3.1] and variable mass [3.5]. Thus, the reader will see how the method
works. In addition, we will display the remaining (equivalence classes of) the l.u.i.r. of

G(1 + 1).
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4.1. Variable force

Let us consider a pointu of the orbitOm,s with coordinates(s = mj, f = 0, m, h =
0, p = 0, k = 0). Two maximal subalgebras ofG(1 + 1) subordinate to this point
are 〈R,D, S, F,M,P 〉 and 〈R,D, S, F,M,K〉. According with Kirillov’s theory, both
subordinate subalgebras induce equivalent representations. In the first case the configuration
space of functions supporting the representation is of time–velocity kind while in the second
one is of space-time kind. For methodological purposes, we are going to consider the second
one (〈R,D, S, F,M,K〉) but keeping in mind that for〈R,D, S, F,M,P 〉 the development
is similar and the results are equivalent.

Let H be the group associated with the subalgebraH = 〈R,D, S, F,M,K〉. A one-
dimensional representation1m,s of H is given by

1m,s(e
h) = e〈u,h〉 = ei(θm+sσ ) (4.3)

where eh ≡ (ρ, δ, σ, α, θ,0, 0, v) ∈ H andh = ρR+(δ+(1/2)αv)D+σS+αF+θM+vK.

The homogeneous spaceG(1 + 1)/H = X is isomorphic toR2 and can be identified

with the space-time manifold. A normalized Borel sectionτ: X −→ G(1+ 1) (τ ◦π = idX
with π the canonical projectionπ: G(1 + 1) −→ G(1 + 1)/H ), is defined by

τ(t, x) := (0, 0, 0, 0, 0, t, x,0). (4.4)

The action ofG(1 + 1) onX is given by

g(t, x) := π(gτ(t, x)) = (t + b, x + a + vt) (4.5)

and the l.u.i.r.Dm,s of G(1 + 1) is defined by

[Dm,s(g)ϕ](g(t, x)) = 1m,s(τ
−1(g(t, x))gτ(t, x))ϕ(t, x) ∀g ∈ G. (4.6)

Since

τ−1(g(t, x))gτ(t, x)

= (ρ + 1
2v

2x + 1
6v

3t, δ + θ(b + t)+ 1
2v

2t2, σ + α(t + b)+ 1
2at

2 + 1
6vt

3,

α + at + 1
2vt

2, θ + vx + 1
2v

2t, 0, 0, v) (4.7)

we get that

[Dm,s(g)ϕ](g(t, x)) = eim[θ+vx+ 1
2v

2t ]eis[σ+α(t+b)+ 1
2at

2+ 1
6vt

3]ϕ(t, x) (4.8)

or

[Dm,s(g)ϕ](t, x)

= eim[θ+v(x−a)+ 1
2v

2(b−t)]eis[σ+αt+ 1
2a(t−b)2+ 1

6v(t−b)3]ϕ(t − b, x − a − v(t − b)).

(4.9)

4.2. Variable mass

Let us consider the pointu of the orbit Od,c with coordinates(r = 0, d, s = 0, f =
0, m = 0, h = 0, p = c, k = 0) and take the maximal subalgebra subordinate tou,
H = 〈R,D, S, F,M,P 〉. It is straightforward to construct a one-dimensional representation
for the groupH , associated withH, given by

1d,c(e
h) = e〈u,h〉 = ei(δd+ac) (4.10)
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where eh = (ρ, δ, σ, α, θ,0, a,0) ∈ H andh = ρR + δD + σS + αF + θM + aP . The

homogeneous spaceG(1+ 1)/H = X is again isomorphic toR2 and can be identified with
the time–velocity manifold. The expression for the normalized Borel section is in this case

τ(t, w) := (0, 0, 0, 0, 0, t,0, w) (4.11)

and the action ofG(1 + 1) onX takes the form

g(t, w) := π(gτ(t, w)) = (t + b,w + v). (4.12)

The element for developing the induction process is

τ−1(g(t, w))gτ(t, w)

= (ρ + 1
6v

3t − (w + v)(θ + 1
2v

2t)+ 1
2(w + v)2(a + vt)

− 1
6(w + v)3(b + t), δ + θ(t + b)− α(w + v)− 1

4vt
2(v + 2w)− at (w + v),

σ + 1
2at

2 + 1
6vt

3 + α(t − b), α + at + 1
2vt

2, θ − a(w + v)

− 1
2v

2t − wvt, 0, a + vt, 0). (4.13)

Finally, the l.u.i.r. is expressed as

[Dd,c(g)ϕ](t, w) = eic[a+v(t−b)]eid[δ+θt−αw− 1
4v(2w−v)(t−b)2−aw(t−b)]ϕ(t − b,w − v). (4.14)

4.3. The l.u.i.r ofG(1 + 1)

We display in this section all of the (classes of equivalence) of the l.u.i.r. ofG(1+1). Each
l.u.i.r., D, is labelled with a set of parameters which also characterizes a coadjoint orbit.
So we follow the same order and enumeration of the coadjoint orbits as in section 3.1.

[1.1]

[Dr,d,s,C1(g)ϕ](t, w)

= eir[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]

×eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eis[σ+αt+ 1

2a(t−b)2+ 1
6v(t−b)3]

×eiC1[a+(t−b)v]ϕ(t − b,w − v).

[1.2]

[Dd,s,C1(g)ϕ](t, w)

= ei(d2/s)[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]

×eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eis[σ+αt+ 1

2a(t−b)2+ 1
6v(t−b)3]

×eiC1[θ+aw−vw(t−b)+ 1
2v

2(t−b)]ϕ(t − b,w − v).

[1.3]

[Dd,s,C2(g)ϕ](t, w)

= ei(d2/s)[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]

×eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eis[σ+αt+ 1

2a(t−b)2+ 1
6v(t−b)3]

×eiC2[a+(t−b)v]ϕ(t − b,w − v).

For all three of these casesϕ ∈ L2(R2).
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[2.1]

[Dr,d,C1(g)ϕ](t, w)

= eir[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]

×eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eiC1[a+(t−b)v]ϕ(t − b,w − v).

[2.2]

[Dd,s,C1(g)ϕ](t, w)

= eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]

×eis[σ+αt+ 1
2a(t−b)2+ 1

6v(t−b)3]eiC1[a+(t−b)v]ϕ(t − b,w − v).

[2.3]

[Dr,s,C1(g)ϕ](t, w)

= eir[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]

×eis[σ+αt+ 1
2a(t−b)2+ 1

6v(t−b)3]eiC1[a+(t−b)v]ϕ(t − b,w − v).

Also for all these three casesϕ ∈ L2(R2).

[3.1]

[Dm,s(g)ϕ](t, x)

= eim[θ+v(x−a)+ 1
2v

2(b−t)]eis[σ+αt+ 1
2a(t−b)2+ 1

6v(t−b)3]

×ϕ(t − b, x − a − v(t − b)).

[3.2]

[Ds,C1,C2(g)ϕ](t) = eis[σ+αt+ 1
2a(t−b)2+ 1

6v(t−b)3]eiC1[a+(t−b)v]eiC2vϕ(t − b).

[3.3]

[Dr,f (g)ϕ](t, w)

= eir[ρ+ 1
2a(4v

2+w2)−θw+ 1
2 (t−b)(vw2−v2w+ 1

3v
3)]eif [α+a(t−b)+ 1

2v(t−b)2]

×ϕ(t − b,w − v).

[3.4]

[Dr,C1,C2(g)ϕ](w) = eir[ρ−θw+ 1
2aw

2− 1
6v

3)]eiC1[a−bw]eiC2bϕ(w − v).

[3.5]

[Dd,C1(g)ϕ](t, w) = eid[δ−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eiC1[a+(t−b)v]ϕ(t − b,w − v).

For case [3.2]ϕ ∈ L2(R); for the remaining onesϕ ∈ L2(R2).

[4.1]

[Df,m,C(g)ϕ](x) = eif [α+ 1
2vb

2−b(x+a)]eim[θ+ 1
2v

2b−va]e(i/2f )[P̂
2+2mĤ+C]vϕ(x − a)

whereP̂ = −i∂x, Ĥ = −x, C = (l − C1), l ∈ R.

[4.2]

[Dm,C1(g)ϕ](w) = eim[θ+ 1
2 (w+v)2b−(w+v)−bC1/2m]ϕ(w − v).

[4.3]

[Df,C1(g)ϕ](t) = eif [α+a(t−b)+ 1
2 (t−b)2−C1v/f ]ϕ(t − b).
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[4.4]

[Dp(g)ϕ](t) = eip[a+v(t−b)]ϕ(t − b).

Also for all four of these casesϕ ∈ L2(R).

[4.5] The representations are one dimensional.

4.4. Unitary irreducible realizations ofG(1 + 1)

Once one has the l.u.i.r. ofG(1+1), the u.i.r. ofG(1+1) can be obtained as follows (see the

appendix). Letχ be a normalized Borel section fromG(1+1) onG(1+1) (χ◦p = idG(1+1)).

Since all the l.u.i.r. ofG(1+1) displayed above, restricted tôH 2(G,U(1)), belong toU(1)
we get the u.i.r.U of G(1 + 1) in the following way:

U(g) = (D ◦ χ)(g) = D(χ(g)) g ∈ G(1 + 1). (4.15)

A suitable choice forχ: G(1 + 1) → G(1 + 1) is

χ(g) ≡ χ((θ, α, b, a, v)) = (0, 0, 0, θ, α, b, a, v). (4.16)

For instance, the u.i.r. associated with the l.u.i.r. [3.1] (variable force) and [3.5] (variable
mass) are, respectively:

Um,s(g) = [Dm,s(χ(g))ϕ](t, x)

= eim[θ+v(x−a)+ 1
2v

2(b−t)]eis[αt+ 1
2a(t−b)2+ 1

6v(t−b)3]ϕ(t − b, x − a − v(t − b))

(4.17)

Ud,C1(g) = [Dd,C1(χ(g))ϕ](t, w)

= eid[−αw+θt−aw(t−b)− 1
4v(t−b)2(2w−v)]eiC1[a+(t−b)v]ϕ(t − b,w − v). (4.18)

5. Stratonovich–Weyl kernels for variable force and variable mass

This section is devoted to the construction of theSW kernels for some physical systems
whose phase spaces are some of the coadjoint orbits studied before. More specifically, we
shall consider the cases of a classical system interacting with a variable force and a system
of variable mass, both cases having the extended Galilei group,G(1+ 1), as the symmetry
group. We have presented the method for constructing theseSW kernels in section 2 and
we are going to apply it here.

5.1. Variable force

Let us consider the point0 ≡ (q = 0, p = 0, f = 0, φ = 0) as the origin of the coadjoint
orbit Om,s . The pointu = (q, p, f, φ) can be considered as the origin transformed by the

group elementg ≡ (0, 0, 0, α,0, b, a, v) of G(1 + 1) such that

α = −φ + f

s
q + f 4

8ms3
− pf 2

2ms2
b = f

s

a = q + f 3

3ms2
− pf

ms
v = f 2

2ms
− p

m
.

(5.1)

The isotopy group of the origin,0, is

0 ≡ {γ ∈ G|γ = (ρ, δ, σ,0, θ,0, 0, 0)}. (5.2)
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The l.u.i.r. ofG restricted to0 are given by

[Dm,s(γ )ϕ](t, x) = eimθeisσ ϕ(t, x) (m, s) ∈ R2. (5.3)

The SW kernel can be defined at the origin as follows:

[�(0)ϕ](t, x) := 22ϕ(−t,−x). (5.4)

This kernel is covariant as can be proved by checking that [D(γ ),�(0)] = 0, γ ∈ 0. The
value of theSW kernel in any pointu = (q, p, f, φ) of the orbit is

[�(u)ϕ](t, x)

= [D(g)�(0)D(g)−1ϕ](t, x)

= 22eim[2v(a−x)+v2(b−t)]eis[2α(t−b)+ 1
3v(t

3−b3)+vbt (b−t)]ϕ(2b − t, 2a − x) (5.5)

with g ≡ (0, 0, 0, α,0, b, a, v) given by (5.1).
It is straightforward to prove that tr[�(q, p, f, φ)] = 1. The property of traciality (2.1)

can be checked using the equivalent statement (see [3]) tr[�(0)�(u)] = δ(u), ∀u ∈ Om,s :
tr[�(0)�(q, p, f, φ)]

=
∫
R2

〈t, x|�(0)�(q, p, f, φ)|t, x〉 dt dx

= 22
∫
R2

〈t, x|�(q, p, f, φ)| − t,−x〉 dt dx

= 22σ δ(f )

∫
R2

exp

{
−im

[
2
−p
m
(q + x)+ p2

m2
t

]}
× exp

{
−iσ

[
2φt + pt3

3m

]}
δ(q) dt dx

= 22σ δ(f ) δ(q)

∫
R2

e2ipxe−2i[p2/2m+σφ+pt2/6m]t dt dx

= 2σ δ(f ) δ(q) δ(p)
∫
R

e−2iσφt dt

= δ(f ) δ(p) δ(q) δ(φ). (5.6)

On the other hand we have computed the tri-kernel (2.6) obtaining that

tr[�(q, p, f, φ)�(q ′, p′, f ′, φ′)�(q ′′, p′′, f ′′, φ′′)]
= 24 exp{−im[2v(a′ − a′′)+ 2v′(a′′ − a)+ 2v′′(a − a′)

+v2(b′ − b′′)+ v′2(b′′ − b)+ v′′2(b − b′)]}
× exp{−iσ [(2α − vb(b′′ − b′ + b))(b′′ − b′)
+(2α′ − v′b′(−b′′ + b′ + b))(b − b′′)
+(2α′′ − v′′b′′(b′′ + b′ − b))(b′ − b)+ 1

3v((b
′′ − b′ + b)3 − b3)

+ 1
3v

′((−b′′ + b′ + b)3 − b′3)+ 1
3v

′′((b′′ + b′ − b)3 − b′′3)]}. (5.7)

For the sake of simplicity we have preferred to write the tri-kernel in terms of the group
elementg = (0, 0, 0, α,0, b, a, v), which according to (5.1) appears as an implicit function
of the canonical coordinates of the orbit. This preserves the symmetric aspect of the formula,
which resembles that of the tri-kernel for the Heisenberg group [2].
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5.2. Variable mass

In this case we have chosen as the origin of the orbit the point of coordinates0 ≡ (k =
0, φ = 0, µ = 0, ε = 0). By the action of the group element

g ≡
(

0,
k − cµ

δ
− 1

2
φµ2,

−ε
δ

− 1

2
µφ2, µ,0,−φ

)
(5.8)

we transform the origin into the pointu = (k, φ, µ, ε) of the orbitOδ,c. The isotopy group
of the origin is

0 ≡ {γ ∈ G|γ = (ρ, δ, σ,0, 0, 0, a,0)}
and the restriction of the representationDδ,c of G to 0 is

[Dd,c(γ )ϕ](t, w) = eicaeiδdϕ(t, w). (5.9)

Taking as theansatzfor the value of theSW kernel at the origin

[�(0)ϕ](t, w) := 22ϕ(−t,−w) (5.10)

and since [D(γ ),�(0)] = 0 we can define theSW kernel at any point of the orbit using the
covariance property (2.2); we obtain that

[�(k, φ, µ, ε)ϕ](t, w)

= [D(g)�(0)D(g)−1ϕ](t, w)

= 22eid[(−2ε/d−µφ2)(t−µ)−(2(k−cµ)/d−φµ2)(φ+w)+φ(φ+w)(t−µ)2]

×e−2icφ(t−µ)ϕ(2µ− t,−2φ − w) (5.11)

with g given by (5.8).
We can prove the traciality property and compute the tri-kernel. We get, respectively,

that

tr[�(0)�(k, φ, µ, ε)]

=
∫
R2

〈t, w|�(0)�(k, φ, µ, ε)|t, w〉 dt dw

= 22
∫
R2

〈t, w|�(k, φ, µ, ε)| − t,−w〉 dt dw

= 24
∫
R2

e−iδ[(−2ε/δ−µφ2/2)(−t−µ)−(2(k−cµ)/δ−φµ2)(φ−w)+φ(φ−w)(−t−µ)2]

×e2icφ(−t−µ)〈t, w|2µ+ t,−2φ + w〉 dt dw

= 22 δ(µ) δ(φ)

∫
R2

e−2iεte−2ikw dt dw

= δ(k) δ(φ) δ(µ) δ(ε) (5.12)

and

tr[�(k, φ, µ, ε)�(k′, φ′, µ′, ε′)�(k′′, φ′′, µ′′, ε′′)]
= 24 exp{2ic[φ(µ′′ − µ′)+ φ′(µ− µ′′)+ φ′′(µ′ − µ)]}

× exp{−iδ[(−2/δ)(ε(µ′′ − µ′)+ ε′(µ− µ′′)+ ε′′(µ′ − µ))

+2α(φ′′ − φ′)+ 2α′(φ − φ′′)+ 2α′′(φ′ − φ)+ φ(φ′ − φ′′)(µ′′ − µ′)2

+φ′(φ′′ − φ)(µ− µ′′)2 + φ′′(φ − φ′)(µ′ − µ)2]} (5.13)

whereα = (k − cµ)/δ − 1
2φµ

2 and the remarks made regarding (5.7) remain also valid
here.
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We should finish this section by noting that the tri-kernels just calculated permit the
definition of twisted products, which provide the basic tool for the Moyal formulation of
quantum mechanics.

6. Conclusions

As we have mentioned above, central extensions of the symmetry groups of physical systems
provide us with the opportunity of introducing interactions in a simple way. Remember that
the central extension associated with the commutator [P,H ] = F in the Galilean(1+1) case
is physically interpreted as a constant force. Despite these expectations it was impossible to
obtain theSW correspondence in some cases—for instance when mass and force extensions
are simultaneously considered inG(1 + 1) [2]. Now, in this paper we have obtained aSW

kernel for a massive one-dimensional Galilean system interacting with a non-constant force.
It is worth mentioning that for the remaining(1 + 1) kinematical groups (Poincaré and

Newton–Hooke) there is no double extension, i.e., the central extension of their first central
extension is trivial [2].

Research on theSW correspondence for(2 + 1) Poincaŕe and Newton–Hooke systems
is in progress.
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de Espãna (Project PB92–0255).

Appendix

A.1. Central extensions of groups and cohomology

A groupE is a central extension of the groupG by the Abelian groupA if the following
sequence is exact:

1 → A
i→ E

p→ G → 1.

It is well known that research on the central extensions, up to equivalence, forms a
cohomological problem [18, 19] in the sense that an extension ofG by A has associated
with it an action2 : G → AutA and an element [w] ∈ H 2

2(G,A). So, there exists a
bijection between the set of classes of central extensions ofG by A, Ext2(G,A), and the
second cohomology group ofG, H 2

2(G,A). We will not discuss here the topological details
related to this problem.

On the other hand, the construction of the central extensions of a Lie groupG by another
(Abelian) Lie groupA is equivalent (at least locally) to finding the central extensions of the
Lie algebra ofG, G, by the Lie algebra,A, of A. For the cases studied in this paper, the
groups are connected and simply connected soH 2(G,A) = H 2(G,A).

We present now a short review on the cohomology of Lie algebras [19].
Let us consider a Lie algebraG and aG-moduleA, i.e. A is a linear space supporting

a linear representationψ of G which satisfies

ψ(X)ψ(Y )− ψ(Y )ψ(X) = ψ([X, Y ]). (A.1)
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An n-cochain is ann-linear alternating mappingωn : G × G × n times. . . × G → A. The
space ofn-cochains is denoted byCn(G,A). For everyn ∈ N there exists a linear map
δn: Cn(G,A) −→ Cn+1(G,A) defined by

(δnω)(X1, . . . , Xn+1)

=
n+1∑
i=1

(−1)i+1ψ(Xi)ω(X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xn+1)

+
∑
i<j

(−1)i+jω([Xi,Xj ], X1, . . . , X̂i , . . . , X̂j , . . . , Xn+1) (A.2)

where the hat ofX̂ indicates thatX is omitted. It is possible to prove thatδn ◦ δn = 0, ∀n.
The operatorδ, called the coboundary operator, is defined onC(G,A) = ⊕∞

n=0C
n(G,A)

in such a way thatδ|Cn = δn and satisfiesδ2 = 0.
In Cn(G,A) we can consider the following subsets:

Bn(G,A) = {ω ∈ Cn|∃α ∈ Cn−1 such thatω = δα}
Zn(G,A) = {ω ∈ Cn|δω = 0}.

It is obvious thatBn ⊂ Zn. The elements ofBn andZn are calledn-coboundaries and
n-cocycles, respectively. Then-cohomology groupHn(G,A) is defined byHn = Zn/Bn.

In our particular case theG-module isR and the representationψ = 0. The space
Cn(G,R) can be identified with

G∗∧ n times. . . ∧ G∗

whereG∗ is the vector space that is the dual ofG. The 2-cocyclesω are characterized by
the property

ω([X1, X2], X3)+ ω([X3, X1], X2)+ ω([X2, X3], X1) = 0 (A.3)

and the 2-coboundaries by

ω(X1, X2) = −α([X1, X2]) (A.4)

with α a 1-cocycle.
As an example, the computation of the second cohomology group ofG(1 + 1) is

performed as follows: let us consider a 2-cochain as an element ofG(1+ 1)∗ ∧ G(1+ 1)∗,
i.e, ω = mK∗ ∧ P ∗ + fP ∗ ∧ H ∗ + aH ∗ ∧K∗, where{H ∗, P ∗,K∗} constitutes a basis of
G(1 + 1)∗, which is the dual of the basis{H,P,K} of G(1 + 1), andm, f, a ∈ R. The
condition for the 2-cocycle (A.3) is trivially satisfied byH,P andK with the commutation
rules (3.2). However, the condition for the 2-coboundary (A.4) implies that the 2-cocycle
H ∗ ∧K∗ is trivial, i.e., a 2-coboundary. Hence,

H 2(G(1 + 1),R) = {[m, f ]/m, f ∈ R} ≡ R2. (A.5)

The two non-trivial 2-cocyclesK∗ ∧ P ∗ and P ∗ ∧ H ∗ are linked with the new Lie
commutators [K,P ] = mI and [P,H ] = f I , respectively (see (3.3)).

For the two groupsG(1 + 1) and G(1 + 1) involved in this paper,H 2(G,R) =
H 2(G,U(1)). A 2-cocycle of the class [m, f ] ∈ H 2(G(1 + 1), U(1)) is obtained by
integrating the new commutation rules, which correspond to the extended algebra. In other
words, we compute the group law for the extended group (see (3.4)). So,

Wm,f (g, g
′) = exp

{
im

(
ab′ + 1

2
vb′2

)}
× exp

{
if

(
va′ + 1

2
v2b′

)}
g, g′ ∈ G(1 + 1). (A.6)
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Similarly for an element [r, d, s,m, f ] ∈ H 2(G(1+ 1), U(1)) we find the following lifting:

Wr,d,s,m,f (g, g
′)

= exp{ir(vθ ′ + 1
2v

2a′ + 1
6v

3b′)}
× exp{id(vα′ − bθ ′ − va′(b + b′)− 1

4v
2b′2 − 1

2bb
′v2)}

× exp{is(−bα′ − 1
2ab

′2 − abb′ − 1
3vb

′3 − 1
2vbb

′2)}
× exp{im(− 1

2bb
′v2ab′ + 1

2vb
′2)} exp{if (va′ + 1

2v
2b′)} (A.7)

with g, g′ ∈ G(1 + 1). Note that in (3.4) and (3.6) we have considered representatives of
the cohomology classes [1, 1] and [1, 1, 1, 1, 1], respectively.

A.2. Linearization of projective representations of Lie groups

As is well known, the projective unitary irreducible representation (p.u.i.r.) of a groupG

is a homomorphism,P , of G on PU(H), the group of projective unitary operators on the
Hilbert spaceH. MoreoverPU(H) = U(H)/U(1), whereU(H) is the group of unitary
operators onH andU(1) the group of operators of the formαI , α ∈ C, |α|2 = 1. In other
words, we have the exact sequence

1 → U(1)
i→ U(H) π→ PU(H) → 1.

When we say thatU is a unitary representation up to a factor or a realization (u.r.) we are
usually making reference to a mapping ofG onU(H) such thatπ ◦U is a p.u.r. ofG. So,
if U is a unitary realization ofG

U(g′)U(g) = ξ(g′, g)U(g′g) ∀g ∈ G
whereξ : G × G → U(1) is called a factor system ofG. The associativity ofU imposes
the following condition onξ :

ξ(g1, g2)ξ(g1g2, g3) = ξ(g2, g3)ξ(g1, g2g3)

i.e., ξ is a 2-cocycle (ξ ∈ Z2(G,U(1))).
The unitary equivalence of two u.i.r. ofG, U and U ′, is defined byU ′(g) =

λ(g)T U(g)T −1 (∀g ∈ G), with T a unitary operator and for a mapλ: G −→ U(1). This
implies that their corresponding factor systems differ in a 2-coboundary(δλ) as is easy to
prove. So, the classes (of equivalence) of the p.u.i.r. ofG are in one-to-one correspondence
with the elements ofH 2(G,U(1)).

The pair(G̃, p) is said to be a splitting group [20] of a Lie groupG if p: G̃ → G is
an epimorphism and any p.u.i.r ofG can be lifted to a l.u.i.r. ofG̃ mapping Kerp = A to
U(1). On the other hand, a l.u.i.r.D of G̃ is said to beA-split if D(A) ⊂ U(1). These
representations of̃G produce by quotient the p.u.i.r. ofG.

In the following we will only consider central extensions ofG by an Abelian group
as candidates for splitting groups ofG. It can be proved that for each normalized Borel
sectionχ : G → G̃ (p ◦ χ = idG) and for eachA-split l.u.r. of G̃ there exists a u.r.U of
G given byU = D ◦ χ , whose factor system isξ = D ◦Wχ , whereWχ is the 2-cocycle
associated with the central extension

1 → A
i→ G̃

p→ G → 1
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defined byχ , i.e.,Wχ(g, g
′) = χ(g)χ(g′)(χ(gg′))−1. This can be illustrated by the follow-

ing commutative diagram:

1 −→ U(1)
i−→ U(H) π−→ PU(H) −→ 1

↑ D|A ↑ D ↖ U ↑ P

1 −→ A
i−→ G̃

p−→ G −→ 1

A ‘minimal’ splitting group G̃ of G or representation group is a central extension ofG

by the dual ofH 2(G,U(1)), Ĥ 2(G,U(1)), such thatĤ 2(G,U(1)) is contained in the
derived group ofG̃ [17]. Remember that the dual of an Abelian group is the group of its
u.i. representations.

In order to show how the theory works, let us construct that ‘minimal’ splitting group
for G(1+ 1). The non-vanishing Lie commutators of the central extension ofG(1+ 1) are

[K,H ] = P [K,P ] = mI [P,H ] = f I m, f ∈ R.

The second cohomology group ofG(1 + 1), H 2(G,U(1)), and its dualĤ 2(G,U(1)) are
both isomorphic toR2. Note that [mf ] −→ ei(αf+θm) ∈ U(1), (α, θ) ∈ R2. Fixing the
values ofm = 1 andf = 1, we use the notationmI = M andf I = F , and ‘integrating’
the Lie commutators of the Lie algebra generated byM,F,H, P andK we get a group
with the law given by (3.4). A lifting of [m, f ] ∈ H 2(G,U(1)) is given by (A.6).
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